Những câu hỏi liên quan
Nguyễn PHương Thảo
Xem chi tiết
Lightning Farron
20 tháng 10 2016 lúc 21:34

a)\(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)

\(\Leftrightarrow2c+2\sqrt{\left(a+c\right)\left(b+c\right)}=0\)

\(\Leftrightarrow\sqrt{\left(a+c\right)\left(b+c\right)}=-c\)

\(\Leftrightarrow\begin{cases}c< 0\\ab+bc+ca+c^2=c^2\end{cases}\)\(\Leftrightarrow ab+bc+ca=0\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc+ac+ab}{abc}=0\)

Đpcm

Bình luận (3)
Lightning Farron
20 tháng 10 2016 lúc 21:38

phần b chắc quy đồng nó lên quá =))

Bình luận (0)
Phạm Đức Dũng
Xem chi tiết
Nguyễn Ý Nhi
3 tháng 2 2020 lúc 20:58

1.Ta có: \(c+ab=\left(a+b+c\right)c+ab\)

\(=ac+bc+c^2+ab\)

\(=a\left(b+c\right)+c\left(b+c\right)\)

\(=\left(b+c\right)\left(a+b\right)\)

CMTT \(a+bc=\left(c+a\right)\left(b+c\right)\)

\(b+ca=\left(b+c\right)\left(a+b\right)\)

Từ đó \(P=\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)

Ta có: \(\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}\right)\)( theo BĐT AM-GM)

CMTT\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{a+b}\right)\)

\(\Rightarrow P\le\frac{1}{2}.3\)

\(\Rightarrow P\le\frac{3}{2}\)

Dấu"="xảy ra \(\Leftrightarrow a=b=c\)

Vậy /...

Bình luận (0)
 Khách vãng lai đã xóa
Phan Gia Huy
3 tháng 2 2020 lúc 21:37

\(\frac{a+1}{b^2+1}=a+1-\frac{ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}\)

\(=a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab+b}{2}\)

Tương tự rồi cộng lại:

\(RHS\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)

\(\ge a+b+c+3-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\)

Dấu "=" xảy ra tại \(a=b=c=1\)

Bình luận (0)
 Khách vãng lai đã xóa
Kudo Shinichi
4 tháng 2 2020 lúc 15:00

Bài 1 : 

\(P=\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\)

\(P=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}+\sqrt{\frac{bc}{a\left(a+b+c\right)+bc}}\)

\(+\sqrt{\frac{ca}{b\left(a+b+c\right)+ca}}\)

\(P=\sqrt{\frac{ab}{ac+bc+c^2+ab}}+\sqrt{\frac{bc}{a^2+ab+ac+bc}}\)

\(+\sqrt{\frac{ca}{ab+b^2+bc+ca}}\)

\(P=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\)

Áp dụng bất đẳng thức Cauchy cho 2 bô só thực không âm

\(\Rightarrow\hept{\begin{cases}\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{\frac{a}{a+c}+\frac{b}{b+c}}{2}\\\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}\\\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}\le\frac{\frac{a}{a+b}+\frac{c}{b+c}}{2}\end{cases}}\)

\(\Rightarrow VT\)

\(\le\frac{\left(\frac{a}{a+c}+\frac{c}{a+c}\right)+\left(\frac{b}{b+c}+\frac{c}{b+c}\right)+\left(\frac{b}{a+b}+\frac{a}{a+b}\right)}{2}\)

\(\Rightarrow VT\le\frac{\frac{a+c}{a+c}+\frac{b+c}{b+c}+\frac{a+b}{a+b}}{2}=\frac{3}{2}\)

\(\Rightarrow P\le\frac{3}{2}\)

Vậy \(P_{max}=\frac{3}{2}\)

Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)

Chúc bạn học tốt !!!

Bình luận (0)
 Khách vãng lai đã xóa
Đinh Thị Ngọc Anh
Xem chi tiết
Kamka Lanka
Xem chi tiết
Đặng Noan ♥
Xem chi tiết
Phan Gia Huy
3 tháng 2 2020 lúc 21:32

\(3-P=1-\frac{x}{x+1}+1-\frac{y}{y+1}+1-\frac{z}{z+1}\)

\(=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{9}{x+y+z+3}=\frac{9}{1+3}=\frac{9}{4}\)

\(\Rightarrow P\le\frac{3}{4}\)

Dấu "=" xảy ra tại \(x=y=z=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
4 tháng 2 2020 lúc 9:02

2/\(LHS\ge\frac{\left(a+b+c\right)^2}{a+b+c+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

\(\ge\frac{\left(a+b+c\right)^2}{a+b+c+\frac{1+b+c}{3}+\frac{1+c+a}{3}+\frac{1+a+b}{3}}=\frac{3}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
Kudo Shinichi
4 tháng 2 2020 lúc 15:40

Bài 1 : 

\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)

Thay \(x+y+z=1\)vào biểu thức 

\(\Rightarrow P=\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\)

Áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\forall a,b>0\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2x+y+z}=\frac{x}{x+y+x+z}\le\frac{x}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\\\frac{y}{x+2y+z}=\frac{y}{x+y+y+z}\le\frac{y}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\\\frac{z}{x+y+2z}=\frac{z}{x+z+y+z}\le\frac{z}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\end{cases}}\)

\(\Rightarrow VT\le\frac{x}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{y}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\)

\(+\frac{z}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)

\(\Rightarrow VT\le\frac{x}{4\left(x+y\right)}+\frac{y}{4\left(x+y\right)}+\frac{x}{4\left(x+z\right)}+\frac{z}{4\left(x+z\right)}+\frac{y}{4\left(y+z\right)}\)

\(+\frac{z}{4\left(y+z\right)}\)

\(\Rightarrow VT\le\frac{x+y}{4\left(x+y\right)}+\frac{x+z}{4\left(x+z\right)}+\frac{y+z}{4\left(y+z\right)}\)

\(\Rightarrow VT\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}\)

\(\Rightarrow P\le\frac{3}{4}\)

Vậy \(P_{max}=\frac{3}{4}\)

Dấu " = " xảy ra khi \(x=y=z\)

Chúc bạn học tốt !!!

Bình luận (0)
 Khách vãng lai đã xóa
tống thị quỳnh
Xem chi tiết
Thắng Nguyễn
10 tháng 8 2017 lúc 22:47

post từng câu một thôi bn nhìn mệt quá

Bình luận (0)
Trương Trọng Tiến
Xem chi tiết
Lê Trường Lân
Xem chi tiết
Tran Le Khanh Linh
16 tháng 5 2020 lúc 21:06

Bài 1: diendantoanhoc.net

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) BĐT cần chứng minh trở thành

\(\frac{x}{\sqrt{3zx+2yz}}+\frac{x}{\sqrt{3xy+2xz}}+\frac{x}{\sqrt{3yz+2xy}}\ge\frac{3}{\sqrt{5}}\)

\(\Leftrightarrow\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}+\frac{y}{\sqrt{5x}\cdot\sqrt{3y+2z}}+\frac{z}{\sqrt{5y}\cdot\sqrt{3z+2x}}\ge\frac{3}{5}\)

Theo BĐT AM-GM và Cauchy-Schwarz ta có:

\( {\displaystyle \displaystyle \sum }\)\(_{cyc}\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}\ge2\)\( {\displaystyle \displaystyle \sum }\)\(\frac{x}{3x+2y+5z}\ge\frac{2\left(x+y+z\right)^2}{x\left(3x+2y+5z\right)+y\left(5x+3y+2z\right)+z\left(2x+5y+3z\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+7\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(xy+yz+zx\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(\ge\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(x^2+y^2+z^2\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x^2+y^2+z^2\right)}{5\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]}=\frac{3}{5}\)

Bình luận (0)
 Khách vãng lai đã xóa
Tran Le Khanh Linh
16 tháng 5 2020 lúc 21:07

Bổ sung bài 1:

BĐT được chứng minh

Đẳng thức xảy ra <=> a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
Trịnh Hoàng Đông Giang
Xem chi tiết